Research in the Akimov group: Quantum Dynamics in Materials

Studies of solar energy materials

Quantum dots
2D materials/ PV
Perovskites
Organic crystals and biomolecules

Theory of quantum dynamics

- Novel quantum-classical methods
- Non-adiabatic molecular dynamics
- Theory of charge transfer

Tugitean

Methodology development and implementation

- Electron and energy transfer
- Photoinduced molecular dynamics
- Methods for large-scale systems
- Software development

Computational Materials Theory and Methods

Lecture 1:
Classical Molecular Dynamics

Alexey V. Akimov
University at Buffalo, SUNY

Outline

- Modeling relies on statistical thermodynamics. Gibbs ensembles. Ensemble averages.
- Connection of statistical thermodynamics and MD. Ergodic hypothesis. Time and ensemble averages.
- Hamiltonian dynamics. EOMs and Integration schemes.
- Non-Hamiltonian dynamics. NVT ensemble
- Observables computed from MD simulations.
- MD modeling protocols
- Overview of available software for MD simulations.
- Demonstrations with Libra. Homework \#1

Modeling material systems

Atomistic model

Properties

Equilibrium, static:

- Diffusion coefficients, D
- Heat capacity, C_{v}
- Caloric curves, phase transitions (E vs.T)
- Radial distribution function (RDF, $g(r)$)

Thermodynamic properties:

- Temperature, T
- Pressure, P
- Kinetic and potential energy, T and U
- Gibbs or Helholtz free energy, G and H

Structural characterization:

- Most stable structure

Dynamical properties:

- Kinetics of phase transitions
- Mechanisms of reactions
- Vibrational spectra, etc.

Modeling realistic systems

Ideal system

"Real" system

Real: all atoms interact with each other

Include all the non-idealities:

- Defects (vacancies, interstitials, dislocations, kinks, dangling bonds, etc.)
- Adsorbates (adatoms, surface dangling bonds passivation, etc.)
- Solvation and counterions
- Phases and grain boundaries

Periodic boundary conditions (PBC)

Real systems $=$ are of N_{A} size, we can model $1-10^{6}$ atoms, usually around 1000

- Surface/volume ratio is large
- The structure of the surface is different from the bulk

To mitigate these effects:
Use PBC

Surface deffects!

How PBC works

Molecules that exit from the left wall re-enter simulation cell from the right wall

simulation cell
replica
(periodic image)

Gibbs Ensemble and phase spaces

Gibbs Ensemble

- Non-interacting copies (replicas) of the same "real" system.
- All copies corresponds to the same macroscopic properties (P, T, S, μ) but different microscopic properties (coordinates and velocities of atoms)

Phase Γ-space:

$$
\boldsymbol{\Gamma}=\{\boldsymbol{q}, \boldsymbol{p}\}
$$

coordinates of a
1 mole of particles
momenta of a
1 mole of particles

Each point is: $\left\{3^{*} 6^{*} 10^{23} ; 3^{*} 6^{*} 10^{23}\right\}$

Observed properties are statistical quantities

To compute properties, we compute thermal (ensemble) averages

$$
A_{o b s}=\langle A\rangle_{T}=\sum_{\Gamma_{i}} A\left(\Gamma_{i}\right) \omega\left(\Gamma_{i}\right)
$$

$\boldsymbol{\omega}\left(\boldsymbol{\Gamma}_{\boldsymbol{i}}\right)$ - a probability to find the system near the point Γ_{i} in the phase space
$\boldsymbol{A}\left(\boldsymbol{\Gamma}_{\boldsymbol{i}}\right)$ - the value of the property of interest A at the point $\Gamma_{\boldsymbol{i}}$ in the phase space

$$
A_{o b s}=\langle A\rangle_{T}=\int_{\Gamma} A(\Gamma) d \omega(\Gamma) \quad A_{o b s}=\langle A\rangle_{T}=\int_{\Gamma} A(\Gamma) \rho(\Gamma) d \Gamma
$$

Ensemble average: $\quad A_{o b s}=\langle A\rangle_{T}=\frac{\int_{\Gamma} A(q, p) \rho(q, p) d^{3 \mathrm{~N}} q d^{3 \mathrm{~N}} p}{\int_{\Gamma} \rho(q, p) d^{3 \mathrm{~N}} q d^{3 \mathrm{~N}} p}$
All properties are defined by the probability distribution function, $\rho(\mathbf{q}, \mathbf{p})$!

Classification of the Gibbs ensembles

NVE (microcanonical): Constant number of particles (N), volume (V), and total energy (E)

$$
\rho_{N V E}(\boldsymbol{q}, \boldsymbol{p})=\delta(\boldsymbol{H}(\boldsymbol{q}, \boldsymbol{p})-\boldsymbol{E})
$$

Nothing but the energy conservation requirement to the "regular" (Hamiltonian) dynamics

- If your integrator or system preparation are bad (don't conserve energy) you do not sample points from the correct NVE distribution function!

NVT (canonical): Constant number of particles (N), volume (V), and temperature (T)

$$
\rho_{N V T}(q, p) \sim \exp \left(-\frac{H(q, p)}{k_{B} T}\right)
$$

"Thermostatted" MD:
Nose, Nose-Hoover, Andersen thermostats

NPT (isobaric-isothermal): Constant number of particles (N), pressure (P), and temperature (T)

$$
\rho_{N V T}(\boldsymbol{q}, \boldsymbol{p}) \sim \exp \left(-\frac{H(q, p)+P V}{\boldsymbol{k}_{\boldsymbol{B}} T}\right)
$$

- Closer to real experimental conditions
- Critical to use in high-pressure studies

Examples of the Gibbs ensembles

$$
\boldsymbol{H}=\frac{\boldsymbol{p}^{\mathbf{2}}}{\mathbf{2} \boldsymbol{m}}+\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{k} \boldsymbol{q}^{\mathbf{2}} \quad \begin{gathered}
k=0.1 \frac{\mathrm{Ha}}{\text { Bohr}} \boldsymbol{\text { Run for } 2 5 0 0 0 \text { a.u. }}
\end{gathered} m=100 \text { a.u. } ; q_{0}=0.1 \mathrm{Bohr}
$$

NVE ensemble:

Single trajectory

25 trajectories

"NVT" ensemble:

25 trajectories

Position (a.u)

Practical exercises with Libra

Define your potential: in "Hamiltonian.py"

$$
\begin{aligned}
& \text { obj.ham_dia.set }\left(0,0,0.5^{*} \mathrm{k}^{*} \mathrm{x}^{*} \mathrm{x}^{*}(1.0+0.0 \mathrm{j})\right) \\
& H=\frac{1}{2} k x^{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { obj.d1ham_dia[i].set }\left(0,0, \mathrm{k}^{*} \mathrm{x}^{*}(1.0+0.0 \mathrm{j})\right) \\
\frac{d H}{d x}=k \mathrm{x}
\end{gathered}
$$

Define your system: in e.g. "nvt.py"

nnucl, ntraj $=1,25$	How many DOFs is per 1 trajectory. How many trajectories
mean_q.set(0,0, 0.1)	The center of the initial distribution. Must specify for each DOF
iM.set(0,0, 1.0/100.0)	The masses of each DOF

Define the simulation parameters : in e.g. "nvt.py"

params["k"]	Harmonic force constant
params["dt"], params["nsteps"]	Integration time step (a.u.) and the number of steps

Run the MD : in e.g. "nvt.py" $Q, P=$ run_nvt(nnucl, ntraj, $q, p, i M$, compute_model, params)

Run the analysis of MD trajectories : in e.g. "nvt.py"
compute_statistics(Q , idof, minx, maxx, dx, "_density_q.txt")

Examples of the Gibbs ensembles

Ideally, in the canonical ensemble we want:

$$
\rho_{N V T} \sim \exp \left(-\frac{H(q, p)}{k_{B} T}\right) \quad d \omega\left(p_{x}\right)=\frac{1}{\sqrt{2 \pi m k_{B} T}} \exp \left(-\frac{p_{x}^{2}}{2 m k_{B} T}\right) d p_{x}
$$

- This may not happen in reality: Ergodicity
- There are other methods of sampling (e.g. MC)

Molecular Dynamics : A way of getting ρ

This is where the statistical thermodynamics is connected to MD!!!

NVE ensemble

Evolution of a point in the phase 「-space (system) is given by the integrating classical equations of motion (EOM).

The correct integration of the Hamiltonian EOMs ensures the Total energy conservation.

Integration

Hamiltonian EOM
NVE ensemble

Hamiltonian dynamics

Connection between Stat. Mech. and MD

Ergodic hypothesis

Given an infinite time to evolve, the system will visit all the points of the phase space

$$
A_{o b s}=\langle A\rangle_{\text {ens }}=\langle A\rangle_{\text {time }} \equiv \frac{1}{N_{T}} \sum_{i=1}^{N_{T}} A\left(\Gamma\left(t_{i}\right)\right)=\frac{1}{T} \int_{0}^{T} A(\Gamma(t)) d t
$$

The probability density is the distribution of the "sampled" points in the phase space (sampled using method for a given ensemble)

Dealing with the erogodicity

$$
A_{\text {obs }}=\langle A\rangle_{\text {ens }}=\langle A\rangle_{\text {time }} \equiv \frac{1}{N_{T}} \sum_{i=1}^{N_{T}} A\left(\Gamma\left(t_{i}\right)\right)=\frac{1}{T} \int_{0}^{T} A(\Gamma(t)) d t
$$

Problem: How to make sure this is true?

Criteria:

- Sufficiently long trajectories
- Starting with many points
- Choosing the right method

Criterion \#1: Sufficiently long trajectories

A protein (as well as any material system) may have two dominant conformations: A and B

If we start in the conformation A , if the barrier ΔE is high, and temperature T is low, we'll have to run a really long simulation (beyond the computer capabilities maybe)

This is fine (to a certain extent!) to study the dynamics of transitions, but not to compute thermodynamic properties!

Criterion \#1: Sufficiently long trajectories (cont.)

 What can we do about it?$$
\exp \left(-\frac{\Delta E}{k_{B} T}\right)
$$

Increase temperature:
temperature accelerated dynamics (TAD)

- The computed rates must be "rescaled" to the original temperature/barrier
- The dynamics is fictitious

Criterion \#2: Starting points

How about if we initialize one fraction of the trajectories to be in the valley A, and the other fraction - to be in the valley B ?

- We don't care about slow transitions
- Need to know the relevant regions in advance (e.g. chemical intuition)

Starting point refers not only to initial geometries!

Remember, we work with

Initial geometries (conformations)

Initial momenta

Criteria \#1 and \#2: Long trajectories \& Starting points

$$
\text { params["nsteps"] = } 2500
$$

25 trajectories

$$
\text { params["nsteps"] = } 250
$$

$$
\text { params["nsteps"] = } 25000
$$

1 trajectory

25 trajectories (1 DOF each) coupled to a Nose-Hoover thermostat ("NVT") ensemble

Criterion \#3: Choosing the right method

Not all systems and not all methods lead to ergodicity

In the NVE ensemble (Hamiltonian dynamics): you will stay in this valley forever!

Energy conservation!

Thermodynamic limit $(N \rightarrow \infty)$:
NVE and NVT ensembles are equivalent

Smaller systems (e.g. Ndof =1): they are notably different

To explore other valleys, we need to utilize NVT simulations! (non-Hamiltonian dynamics)

The total energy of the system is not conserved!

Criterion \#3: Using the right method

Chain size $=1$

Chain size $=5$

Chain size $=25$
Chain size $=250$

This is not quite the right method: the NVT ensemble doesn't make sense for a system of 1 nuclear DOF

Basic terminology of classical mechanics

Material point: neglect size
What is large? Is the Earth large? Compared to what?

Choice of the coordinates:

- Cartesian or Internal
- Can be chosen as convenient

Equations of motion(EOM):

$$
f(\boldsymbol{r}, \dot{\boldsymbol{r}}, \ddot{\boldsymbol{r}})=0
$$

This is what we solve by doing MD

Trajectory:

$$
\begin{aligned}
& \boldsymbol{r}(t)=\left(x_{1}(t), y_{1}(t), z_{1}(t), x_{2}(t), y_{2}(t), z_{2}(t), \ldots\right)^{T} \\
& \boldsymbol{r}(t)=\left(\boldsymbol{r}_{1}(t), \boldsymbol{r}_{2}(t), \ldots, \boldsymbol{r}_{N}(t)\right)^{T} \\
& \boldsymbol{r}_{\mathbf{1}}(t)=\left(x_{1}(t), y_{1}(t), z_{1}(t)\right)^{T}=\left(\begin{array}{l}
x_{1}(t) \\
y_{1}(t) \\
z_{1}(t)
\end{array}\right)
\end{aligned}
$$

Degrees of freedom (DOF)

DOF = parameters that fully specify the geometry of a system

The number of DOFs: 3 N - (\# of constraints)
An atom: 3*1 = 3 DOFs

$$
\begin{aligned}
& \text { DOFs: } x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2} \\
& \text { (Cartesian) }
\end{aligned}
$$

DOFs: x, y, z

DOFs: $x_{1}, y_{1}, z_{1}, r, \phi, \theta$ (polar)

Degrees of freedom (DOF)

Triatomic molecule: 3*3 = 9 DOFs

DOFs (internal):

DOFs: $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, x_{3}, y_{3}, z_{3}$ (Cartesian)
X, Y, Z - position of the center of mass (COM)
Θ, ϕ, ψ - angles the molecular inertia axes form with the external (Cartesian) coordinate system
r_{12}, r_{23} - interatomic distances
Θ_{123} - an angle between two bonds

Hamiltonian Dynamics

$$
H=K+U=\sum_{i=1}^{N} \frac{\boldsymbol{p}_{i}^{2}}{2 m_{i}}+U(\{\boldsymbol{q}\})=\sum_{i=1}^{N} \frac{p_{x, i}^{2}+p_{y, i}^{2}+p_{z, i}^{2}}{2 m_{i}}+U\left(\left\{q_{1}, q_{2}, \ldots q_{3 N}\right\}\right)
$$

Total energy (Hamiltonian)

Kinetic energy
Potential energy

Hamiltonian EOM (generate an NVE ensemble)

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} \\
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& v_{i}=\dot{q}_{i}=\frac{p_{i}}{m_{i}} \\
& \dot{p}_{i}=m_{i} a_{i}=-\frac{\partial U}{\partial q_{i}} \equiv F_{i}
\end{aligned}
$$

Forces in MD

$$
\boldsymbol{F}=-\frac{\partial U}{\partial \boldsymbol{q}}
$$

what this really means: we compute the x, y, and z components of the forces acting on all particles i just by taking derivatives of the potential energy w.r.t. the corresponding coordinate

More explicitly:

$$
\begin{array}{ccc}
F_{1, x}=-\frac{\partial U}{\partial x_{1}} & F_{1, y}=-\frac{\partial U}{\partial y_{1}} & F_{1, z}=-\frac{\partial U}{\partial z_{1}} \\
F_{2, x}=-\frac{\partial U}{\partial x_{2}} & F_{2, y}=-\frac{\partial U}{\partial y_{2}} & F_{2, z}=-\frac{\partial U}{\partial z_{2}} \\
\ldots & \\
F_{N, x}=-\frac{\partial U}{\partial x_{N}} & F_{N, y}=-\frac{\partial U}{\partial y_{N}} & F_{N, z}=-\frac{\partial U}{\partial z_{N}}
\end{array}
$$

Force and energy evaluations - are the most expensive
(time consuming)
parts of MD simulations

Where to get U?

- Model Problems (here)
- Force Fields (next)
- Quantum Mechanics (later)

Forces in MD

Forces must be continuous! Or the MD won't be stable (will produce meaningless data)

This is gonna be a problematic potential!

Don't forget the sign! Otherwise the system will blow up

Defined in Hamiltonian.py

\[

\]

Beware! Here we compute just the derivative, not the force, which is a negative derivative!

Exercises:

- Can you define your Python function for Morse potential?
- Can you define your Harmonic potential for 2 particles connected by a spring in 1 D?

Solving (integrating) the Hamiltonian EOM

Taylor series

$$
q_{i}(t+d t) \approx q_{i}(t)+\frac{p_{i}(t)}{m_{i}} d t+\frac{f_{i}(t)}{2 m_{i}} d t^{2}+O\left(d t^{3}\right)+O\left(d t^{4}\right)
$$

$$
q_{i}(t-d t) \approx q_{i}(t)-\frac{p_{i}(t)}{m_{i}} d t+\frac{f_{i}(t)}{2 m_{i}} d t^{2}-O\left(d t^{3}\right)+O\left(d t^{4}\right)
$$

$$
\left.\begin{array}{l}
q_{i}(t+d t) \approx 2 q_{i}(t)-q_{i}(t-d t)+\frac{f_{i}(t)}{m_{i}} d t^{2}+O\left(d t^{4}\right) \\
p_{i}(t) \approx \frac{q_{i}(t+d t)-q_{i}(t-d t)}{2 d t}+O\left(d t^{3}\right)
\end{array}\right\} \quad \text { Verlet algorithm }
$$

$$
q_{i}(t+d t) \approx q_{i}(t)+p_{i}(t) d t+\frac{d t^{2}}{2} f_{i}(t)
$$

$$
p_{i}(t+d t) \approx p_{i}(t)+\frac{d t}{2}\left[f_{i}(t)+f_{i}(t+d t)\right]
$$

velocity Verlet algorithm
More stable!

How to assess the quality of integration scheme?

Invariants (integrals) of motion: In the isolated system (NVE), the following quantities are conserved:
Invariants (integrals)
of motion: $\begin{cases}H=T+U & \text { total energy } \\ P=\sum_{i}^{N} p_{i} & \text { total momentum } \\ L=\sum_{i}^{N} l_{i}=\sum_{i}^{N} r_{i} \times p_{i} & \begin{array}{l}\text { total angular } \\ \text { momentum }\end{array}\end{cases}$

The energy conservation can be affected by:

- Integration time step vs. highest frequency $\omega=\sqrt{\frac{k}{m}}$
- Integration algorithm (e.g. Verlet vs. velocity Verlet)
- Force discontinuities
- Total energy of the systems (too "hot" requires smaller $d t$)

Illustration

$$
\begin{aligned}
& k=0.1, m=100 \Rightarrow \omega=\sqrt{\frac{0.1}{100}} \approx 0.032 a . u .^{-1} \Rightarrow d t \sim \frac{1}{0.032}=31.6 \\
& d t=10 \quad \mathrm{dt}=30 \quad \mathrm{dt}=40 \quad \mathrm{dt}=60
\end{aligned}
$$

Position (a.u)

Non-Hamiltonian Dynamics

To generate NVT (and other ensembles) we can:

- rescale velocity to satisfy the temperature $\mathrm{T} ; \boldsymbol{\rightarrow}$ incorrect sampling of fluctuations
- add a random force and add a friction (Langevin/Andersen thermostat)
- rescale velocities by a factor not too different from 1.0, but which will eventually lead to the desired average temperature (Berendsen)
- Introduce extended phase space variables such that the integration over extra variables will yield the desired distribution (Nose, Nose-Hoover/chain thermostats, etc.)

$$
\delta\left(H\left(q, p, s, p_{s}\right)-E\right) \rightarrow \int d s d p_{s} \delta\left(H\left(q, p, s, p_{s}\right)-E\right)=\exp \left(-\frac{H(q, p)}{k_{B} T}\right)
$$

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}-\zeta p_{i}
$$

There is no Hamiltonian from which these equations can be derived.

But, there is an extended energy, which non-Hamiltonian dynamics is conserved along the motion.

An illustration of Non-Hamiltonian Dynamics

Frequency of system-bath interaction

NVE limit

unstable

Observables 1: Initial velocities and Temperature

$$
\begin{aligned}
& \rho\left(v_{x}\right) d v_{x}=\frac{d N_{v_{x}}}{N}=\left(\frac{m}{2 \pi k_{B} T}\right)^{1 / 2} \exp \left(-\frac{m v_{x}^{2}}{2 k_{B} T}\right) d v_{x} \\
& \rho(v) d v=\frac{d N_{v}}{N}=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} \exp \left(-\frac{m v_{x}^{2}}{2 k_{B} T}\right) d v
\end{aligned}
$$

Average velocity (magnitude):

$$
\langle v\rangle=\int_{0}^{\infty} v \rho(v) d v=\sqrt{\frac{8 k_{B} T}{\pi m}}
$$

Average squared velocity:

$$
\left\langle v^{2}\right\rangle=\int_{0}^{\infty} v^{2} \rho(v) d v=\frac{3 k_{B} T}{m}
$$

Kinetic energy:
$K=\frac{1}{2} \sum_{i=1}^{N} m_{i} v_{i}^{2}$

Average kinetic energy:

$$
\langle K\rangle=\frac{3 N k_{B} T}{2}
$$

Instantaneous temperature:

$$
T=\frac{\sum_{i=1}^{N} m_{i} v_{i}^{2}}{3 N k_{B}}
$$

Equipartition Principle: in classical limit, the average energy corresponding to any quadratic term in Hamiltonian is $\frac{1}{2} k_{B} T$

Observables 2: Pressure

Virial theorem gives:

$$
\langle K\rangle=-\frac{1}{2} \sum_{i=1}^{N}\left\langle q_{i} F_{i}\right\rangle
$$

from which, one can find:

$$
P V=N k_{B} T-\frac{1}{3} \sum_{i=1}^{N}\left(q_{i} \frac{\partial U}{\partial q_{i}}\right)
$$

If the particles do not interact ($U=0$):
$P V=N k_{B} T$
the ideal gas law

Observables 3: Thermodynamics fluctuations

Within the canonic (NVT) ensemble

$$
\left\langle\delta E^{2}\right\rangle=k_{B} T^{2} C_{V}
$$

Heat capacity and phase transitions

$$
\left\langle\delta K^{2}\right\rangle=\frac{3}{2} N\left(k_{B} T\right)^{2}
$$

$$
\left\langle\delta U^{2}\right\rangle=k_{B} T^{2}\left(c_{V}-\frac{3 N k_{B}}{2}\right)
$$

Observables 4: Radial distribution function (RDF)

- RDF, $g(r)$:

The probability to find two atoms at a given distance r from each other in comparison to the probability of the same but in an uniformly distributed system of the same density

$$
\boldsymbol{g}(\boldsymbol{r})=\frac{\boldsymbol{\rho}(\boldsymbol{r})}{\langle\boldsymbol{\rho}\rangle}=\frac{\boldsymbol{V} \boldsymbol{N}(\boldsymbol{r})}{\mathbf{4 \pi} \boldsymbol{r}^{\mathbf{2} \Delta \mathbf{r} \mathbf{N}} \quad \begin{array}{l}
\text { The average number of particles } \\
\text { that are within the shell }[r, r+\Delta r] \\
\text { from any other particle }
\end{array}}
$$

Observables 5: Time-correlation function

Time, t

Time, t

Observables 5: Velocity autocorrelation function

$$
C_{v v}(\tau)=\langle v(t) v(t+\tau)\rangle_{\text {ens }}=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{N_{\text {in }}} \sum_{t_{0}=1}^{N_{\text {in }}} v_{i}\left(t_{0}\right) v_{i}\left(t_{0}+\tau\right)
$$

Averaging is done w.r.t. the number of particles and w.r.t. the initial times

Optical response theory:

Fourier transform of the ACF gives an IR spectrum

$$
I_{v v}(\omega)=\int_{-\infty}^{\infty} \exp (-i \omega \tau) C_{v v}(\tau) d \tau
$$

Observables 6: Transport properties

$$
\left.\langle | q(t)-\left.q(0)\right|^{2}\right\rangle=6 D t
$$

$$
D=\int_{0}^{\infty} C_{v v}(\tau) d \tau
$$

Einstein formula for diffusion coefficient in 3D

Green-Kubo formula

- Good with PBC
- Careful if stochastic thermostat

Activation energy for diffusion: $D \sim \exp \left(-\Delta E_{a} / k_{B} T\right)$

General MD algorithm

Initial conditions:
Input structure - e.g. from a database, guess structure Describe the chemistry of the system

Initial conditions:
E.g. sample from the Maxwell-Boltzmann distribution using MC. Describe the conditions

Interactions:
QM,
Force fields,
Models
Describe the physics
of the system Integration:
Equations to sample NVE or NVT Ensemble Describe the statistics of the system

Preparation to MD simulations

Energy

3: production run. Sample conformation from desired distribution using suitable MD or MC algorithm

Exercises: ACF and Spectrum of a predefined data

In Tut2

$$
r(t)=\left(\sin \left(\omega_{1} t\right), \cos \left(\omega_{2} t\right), \sin \left(\omega_{3} t\right)\right)
$$

$$
\begin{gathered}
\omega_{1}=500 \mathrm{~cm}^{-1} \\
\omega_{2}=1400 \mathrm{~cm}^{-1} \\
\omega_{3}=850 \mathrm{~cm}^{-1}
\end{gathered}
$$

Exercises: ACF and Spectrum of 2-atomic system

In Tut3, prefix = "test1"
Analytic calculation:
Frequency $=3103.79623215 \mathrm{~cm}^{\wedge}-1$

In Tut3, prefix = "test2"

Normal modes give: 4389.43073

Exercises: ACF and Spectrum of a linear chain

In Tut3, prefix = "test4",

Normal modes give:
$1136.06827 \mathrm{~cm}^{\wedge}-1$ $2194.71536 \mathrm{~cm}^{\wedge}-1$ $3103.79623 \mathrm{~cm}^{\wedge}-1$ $3801.35852 \mathrm{~cm}^{\wedge}-1$
$4239.86450 \mathrm{~cm}^{\wedge}-1$

Exercises: Linear chain in NVE ensemble

Tut4: NVE

Exercises: Linear chain in NVT ensemble

Tut4: NVT

Exercises: Dynamics of LJ cluster

Tut5: NVE of LJ cluster, no thermalization - nve.py

Energy is not conserved! (phase transitions)

Temperature is high!

Low-frequency modes are indicative of translational motion

Exercises: Dynamics of LJ cluster

Tut5: NVE of LJ cluster, with thermalization (simulated annealing) -

 nve2.py

Energy is well conserved!

Time (a.u)

Higher-frequency modes are resolved

Exercises: Dynamics of LJ cluster

Tut5: NVT of LJ cluster after simulated annealing (nvt.py), slow bath

Beware: Bath modes!

Exercises: Dynamics of LJ cluster

Tut5: NVT of LJ cluster after simulated annealing (nvt.py), fast bath

Beware: Bath modes!

Exercises: Diffusion coefficient, larger cluster

 Tut6:

Exercises: Heat capacity

Tut7:

Summary of Tutorials

Tut1 - demonstration of MD for $N_{t r a j}$ trajectories, each with 1 particle. NVE and NVT
Tut2 - demonstration of computing the ACF and its FT for a predefined sequence
Tut3 - computing ACF for a chain of particles connected by springs

Tut4 - going back to MD, for a chain of atoms.
Tut5 - MD of a LJ cluster

Tut6 - MD of a larger LJ cluster, computing diffusion coefficients
Tut7 - MD of a LJ cluster, computing heat capacity

Overview of software

Material Simulations

Quantum Calculations

