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Lecture 1: 
Classical Molecular Dynamics
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Outline

• Modeling relies on statistical thermodynamics. Gibbs ensembles. 
Ensemble averages.

• Connection of statistical thermodynamics and MD. Ergodic hypothesis.
Time and ensemble averages.

• Hamiltonian dynamics. EOMs and Integration schemes.

• Non-Hamiltonian dynamics. NVT ensemble

• Observables computed from MD simulations.

• MD modeling protocols

• Overview of available software for MD simulations.

• Demonstrations with Libra. Homework #1
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Modeling material systems

Atomistic model Properties

Dynamical properties:
- Kinetics of phase transitions
- Mechanisms of reactions
- Vibrational spectra, etc.

Equilibrium, static:
- Diffusion coefficients, 𝐷
- Heat capacity, 𝐶𝑣
- Caloric curves, phase transitions 

(𝐸 𝑣𝑠. 𝑇)
- Radial distribution function (RDF, 𝑔(𝑟))

Thermodynamic properties:
- Temperature, 𝑇
- Pressure, 𝑃
- Kinetic and potential energy, 𝑇 and 𝑈
- Gibbs or Helholtz free energy, 𝐺 and 𝐻

Structural characterization:
- Most stable structure
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Modeling realistic systems

“Real” system

Real: all atoms interact with each other

Include all the non-idealities:
• Defects (vacancies, interstitials, 

dislocations, kinks, dangling bonds, etc.)

• Adsorbates (adatoms, surface dangling 
bonds passivation, etc.)

• Solvation and counterions

• Phases and grain boundaries

Ideal system
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Periodic boundary conditions (PBC)

Real systems = are of 𝑁𝐴 size, we can model 1 − 106 atoms, usually around 1000

• Surface/volume ratio is large
• The structure of the surface is different 

from the bulk

To mitigate these effects:

Use PBC

Surface deffects!

PBC
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How PBC works

Molecules that exit from the left wall re-enter simulation cell from the right wall

simulation cell replica
(periodic image)
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Gibbs Ensemble and phase spaces

Gibbs Ensemble

• Non-interacting copies (replicas) 
of the same “real” system. 

• All copies corresponds to the same
macroscopic properties (P, T, S, 𝜇)
but different microscopic properties
(coordinates and velocities of atoms)

{q}

{p}

Each point is: {3*6*1023; 3*6*1023}

Phase 𝚪-space:

𝚪 = 𝒒, 𝒑

coordinates of a
1 mole of particles

momenta of a
1 mole of particles
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To compute properties, we compute thermal (ensemble) averages

𝑨𝒐𝒃𝒔 = 𝑨 𝑻 =

𝜞𝒊

𝑨 𝚪𝒊 𝝎 𝜞𝒊

Observed properties are statistical quantities

𝝎 𝜞𝒊 - a probability to find the system near 
the point 𝜞𝒊 in the phase space

𝑨 𝜞𝒊 - the value of the property of interest
𝐴 at the point 𝜞𝒊 in the phase space

𝑨𝒐𝒃𝒔 = 𝑨 𝑻 = න
𝚪

𝑨 𝚪 𝒅𝝎(𝚪) 𝑨𝒐𝒃𝒔 = 𝑨 𝑻 = න
𝚪

𝑨 𝚪 𝝆 𝚪 𝒅𝚪

𝐴𝑜𝑏𝑠 = 𝐴 𝑇 =
Γ𝐴 𝑞, 𝑝 𝜌 𝑞, 𝑝 𝑑3N𝑞 𝑑3N𝑝

Γ𝜌 𝑞, 𝑝 𝑑3N𝑞 𝑑3N𝑝
Ensemble average:

All properties are defined by the 
probability distribution function, 𝝆(𝐪, 𝐩) !
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Classification of the Gibbs ensembles

NVE (microcanonical): Constant number of particles (N), volume (V), and total energy (E)

NVT (canonical): Constant number of particles (N), volume (V), and temperature (T)

𝝆𝑵𝑽𝑬(𝒒, 𝒑) = 𝜹(𝑯 𝒒, 𝒑 − 𝑬)
Nothing but the energy conservation 
requirement  to the “regular” (Hamiltonian) 
dynamics

• If your integrator or system preparation are bad (don’t conserve energy) –
you do not sample points from the correct NVE distribution function!

𝝆𝑵𝑽𝑻 𝒒, 𝒑 ~𝒆𝒙𝒑 −
𝑯(𝒒, 𝒑)

𝒌𝑩𝑻

“Thermostatted” MD:
Nose, Nose-Hoover, Andersen thermostats

NPT (isobaric-isothermal): Constant number of particles (N), pressure (P), and temperature (T)

𝝆𝑵𝑽𝑻 𝒒, 𝒑 ~𝒆𝒙𝒑 −
𝑯 𝒒, 𝒑 + 𝑷𝑽

𝒌𝑩𝑻
• Closer to real experimental conditions
• Critical to use in high-pressure studies
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Examples of the Gibbs ensembles

𝑯 =
𝒑𝟐

𝟐𝒎
+
𝟏

𝟐
𝒌𝒒𝟐

NVE ensemble:

𝑘 = 0.1
𝐻𝑎

𝐵𝑜ℎ𝑟2
; 𝑚 = 100 𝑎. 𝑢. ; 𝑞0 = 0.1 𝐵𝑜ℎ𝑟

Run for 25000 a.u.

Single trajectory 25 trajectories

“NVT” ensemble:

Single trajectory 25 trajectories
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Practical exercises with Libra

obj.ham_dia.set(0,0, 0.5*k*x*x*(1.0+0.0j) ) obj.d1ham_dia[i].set(0,0, k*x*(1.0+0.0j) )

Define your potential: in “Hamiltonian.py”

𝐻 =
1

2
𝑘𝑥2

𝑑𝐻

𝑑𝑥
= 𝑘x

nnucl, ntraj = 1, 25

Define your system: in e.g. “nvt.py”

How many DOFs is per 1 trajectory.  How many trajectories

mean_q.set(0,0, 0.1) The center of the initial distribution. Must specify for each DOF

iM.set(0,0, 1.0/100.0) The masses of each DOF

params["k"]

Define the simulation parameters : in e.g. “nvt.py”

Harmonic force constant

params[“dt"], params[“nsteps"] Integration time step (a.u.) and the number of steps

Q, P = run_nvt(nnucl, ntraj, q, p, iM, compute_model, params)Run the MD : in e.g. “nvt.py”

Run the analysis of MD trajectories : in e.g. “nvt.py”

compute_statistics(Q, idof, minx, maxx, dx, "_density_q.txt") 
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Examples of the Gibbs ensembles

𝜌𝑁𝑉𝑇~exp −
𝐻 𝑞, 𝑝

𝑘𝐵𝑇
𝑑𝜔 𝑝𝑥 =

1

2𝜋𝑚𝑘𝐵𝑇
exp −

𝑝𝑥
2

2𝑚𝑘𝐵𝑇
𝑑𝑝𝑥

Ideally, in the canonical ensemble we want:

• This may not happen in reality: Ergodicity
• There are other methods of sampling (e.g. MC)
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Molecular Dynamics : A way of getting 𝝆

This is where the statistical thermodynamics is connected to MD!!!

NVE ensemble

NVE ensemble
Evolution of a point in the phase Г-space (system) is given
by the integrating classical equations of motion (EOM).

The correct integration of the Hamiltonian EOMs ensures the 
Total energy conservation.

Hamiltonian EOM

Integration

Hamiltonian dynamics
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Connection between Stat. Mech. and MD

Ergodic hypothesis

Given an infinite time to evolve, the system 
will visit all the points of the phase space

𝐴𝑜𝑏𝑠 = 𝐴 𝑒𝑛𝑠 = 𝐴 𝑡𝑖𝑚𝑒 ≡
1

𝑁𝑇


𝑖=1

𝑁𝑇

𝐴(Γ(𝑡𝑖)) =
1

𝑇
න
0

𝑇

𝐴 Γ 𝑡 𝑑𝑡

The probability density is the distribution 
of the “sampled” points in the phase space
(sampled using method for a given ensemble)
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𝐴𝑜𝑏𝑠 = 𝐴 𝑒𝑛𝑠 = 𝐴 𝑡𝑖𝑚𝑒 ≡
1

𝑁𝑇


𝑖=1

𝑁𝑇

𝐴(Γ(𝑡𝑖)) =
1

𝑇
න
0

𝑇

𝐴 Γ 𝑡 𝑑𝑡

Dealing with the erogodicity

Problem: How to make sure this is true?

Criteria:

• Sufficiently long trajectories
• Starting with many points
• Choosing the right method
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Criterion #1: Sufficiently long trajectories

A protein (as well as any material system) 
may have two dominant conformations: A and B

kT

A            B

kT

A            B

𝚫𝑬
Transition rates

proportional to exp −
Δ𝐸

𝑘𝐵𝑇

If we start in the conformation A, if the barrier Δ𝐸 is high, and temperature 𝑇 is low, 
we’ll have to run a really long simulation (beyond the computer capabilities maybe)

This is fine (to a certain extent!) to study the dynamics of transitions, 
but not to compute thermodynamic properties! 
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Criterion #1: Sufficiently long trajectories (cont.)

exp −
Δ𝐸

𝑘𝐵𝑇

What can we do about it?

Increase temperature: 
temperature accelerated dynamics (TAD)

kT

• The computed rates must be “rescaled” to the original temperature/barrier
• The dynamics is fictitious

Lower the effective barrier: 
Hyperdynamics/metadynamics

kT

𝚫𝑬
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Criterion #2: Starting points

How about if we initialize one fraction of the trajectories to be in the
valley A, and the other fraction – to be in the valley B?

kT

A            B

kT

• We don’t care about slow transitions

• Need to know the relevant regions
in advance (e.g. chemical intuition)

Starting point refers not
only to initial geometries!

Remember, we work with
{𝑞, 𝑝}

Initial geometries
(conformations)

Initial momenta
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Criteria #1 and #2: Long trajectories & Starting points

params["nsteps"] = 250 params["nsteps"] = 2500 params["nsteps"] = 25000

25 trajectories

1 trajectory

25 trajectories (1 DOF each) coupled to a Nose-Hoover thermostat (“NVT”) ensemble
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Criterion #3: Choosing the right method

kT

Not all systems and not all methods lead to ergodicity

Thermodynamic limit (𝑁 → ∞): 
NVE and NVT ensembles are equivalent

Smaller systems (e.g. Ndof = 1): they are
notably different

In the NVE ensemble (Hamiltonian dynamics): 
you will stay in this valley forever!

Energy conservation!

To explore other valleys, we need to
utilize NVT simulations!
(non-Hamiltonian dynamics)

The total energy of the system
is not conserved!
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Criterion #3: Using the right method

Chain size = 1 Chain size = 5 Chain size = 25 Chain size = 250

This is not quite the right method: the NVT ensemble doesn’t make
sense for a system of 1 nuclear DOF



Basic terminology of classical mechanics

Material point: neglect size

Choice of the coordinates: 
• Cartesian or Internal
• Can be chosen as convenient
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What is large? Is the Earth large? Compared to what?

Equations of motion(EOM):

Trajectory:
This is what we solve by doing MD

𝑓 𝒓, ሶ𝒓, ሷ𝒓 = 0

𝒓 𝑡 = 𝑥1 𝑡 , 𝑦1 𝑡 , 𝑧1 𝑡 , 𝑥2 𝑡 , 𝑦2 𝑡 , 𝑧2 𝑡 , … 𝑇

𝒓 𝑡 = 𝒓𝟏 𝑡 , 𝒓𝟐 𝑡 , … , 𝒓𝑵(𝑡)
𝑇

𝒓𝟏 𝑡 = 𝑥1 𝑡 , 𝑦1 𝑡 , 𝑧1 𝑡
𝑇
=

𝑥1(𝑡)
𝑦1(𝑡)
𝑧1(𝑡)

{q}

{p}



Degrees of freedom (DOF)

DOF = parameters that fully specify the geometry of a system

The number of DOFs:  3N – (# of constraints)

An atom: 3*1 = 3 DOFs

DOFs: 𝑥, 𝑦, 𝑧

Diatomic molecule: 3*2 = 6 DOFs

DOFs: 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2
(Cartesian)

DOFs: 𝑥1, 𝑦1, 𝑧1, 𝑟, 𝜙, 𝜃 (polar)

DOFs: 𝑋, 𝑌, 𝑍, 𝑟, 𝜙, 𝜃 (internal)



Degrees of freedom (DOF)

Triatomic molecule: 3*3 = 9 DOFs

DOFs: 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, 𝑥3, 𝑦3, 𝑧3
(Cartesian)

DOFs (internal): 

𝑋, 𝑌, 𝑍 – position of the center of mass (COM)

Θ, 𝜙, 𝜓 – angles the molecular inertia axes form 
with the external (Cartesian) coordinate system

𝑟12, 𝑟23 - interatomic distances

Θ123 - an angle between two bonds
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Hamiltonian Dynamics

𝐻 = 𝐾 + 𝑈 =

𝑖=1

𝑁
𝒑𝑖
2

2𝑚𝑖
+ 𝑈 𝒒 =

𝑖=1

𝑁
𝑝𝑥,𝑖
2 + 𝑝𝑦,𝑖

2 + 𝑝𝑧,𝑖
2

2𝑚𝑖
+ 𝑈 𝑞1, 𝑞2, … 𝑞3𝑁

Kinetic energy Potential energy
Total energy

(Hamiltonian)

ሶ𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖

ሶ𝑝𝑖 = −
𝜕𝐻

𝜕𝑞𝑖

Hamiltonian EOM
(generate an NVE ensemble)

In a nutshell: Newton’s second law

𝑣𝑖 = ሶ𝑞𝑖 =
𝑝𝑖
𝑚𝑖

ሶ𝑝𝑖 = 𝑚𝑖𝑎𝑖 = −
𝜕𝑈

𝜕𝑞𝑖
≡ 𝐹𝑖



Where to get U?  
• Model Problems (here)
• Force Fields (next)
• Quantum Mechanics (later)

27

𝑭 = −
𝜕𝑈

𝜕𝒒

what this really means: we compute the x,y, and z components of
the forces acting on all particles 𝑖 just by taking derivatives of the
potential energy w.r.t. the corresponding coordinate

Forces in MD

More explicitly: 𝐹1,𝑥 = −
𝜕𝑈

𝜕𝑥1
𝐹1,𝑦 = −

𝜕𝑈

𝜕𝑦1
𝐹1,𝑧 = −

𝜕𝑈

𝜕𝑧1

𝐹2,𝑥 = −
𝜕𝑈

𝜕𝑥2
𝐹2,𝑦 = −

𝜕𝑈

𝜕𝑦2
𝐹2,𝑧 = −

𝜕𝑈

𝜕𝑧2
…

𝐹𝑁,𝑥 = −
𝜕𝑈

𝜕𝑥𝑁
𝐹𝑁,𝑦 = −

𝜕𝑈

𝜕𝑦𝑁
𝐹𝑁,𝑧 = −

𝜕𝑈

𝜕𝑧𝑁

Force and energy
evaluations – are the
most expensive 
(time consuming)
parts of MD simulations
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Forces in MD

def compute_model(q, params, full_id):

Defined in Hamiltonian.py

obj.ham_dia.set(0,0, 0.5*k*x*x*(1.0+0.0j) )

obj.d1ham_dia[i].set(0,0, k*x*(1.0+0.0j) )

𝐻 =
1

2
𝑘𝑥2

𝑑𝐻

𝑑𝑥
= 𝑘x

Beware! Here we compute
just the derivative, not
the force, which is a negative
derivative!

Forces must be continuous! Or the MD won’t be stable (will produce meaningless data)

𝑈 = ቊ
𝑘 𝑥 + 𝑎 , 𝑥 ∈ [−𝑎, 0]

𝑘 𝑎 − 𝑥 , 𝑥 ∈ [0, 𝑎]

Energy

Coordinate

-a          0           a 

𝐹 = ቊ
−𝑘, 𝑥 ∈ [−𝑎, 0]
𝑘, 𝑥 ∈ [0, 𝑎]

Don’t forget the sign!  Otherwise the system will blow up

Exercises: 
• Can you define your Python function for Morse potential?
• Can you define your Harmonic potential for 2 particles connected by a spring in 1 D?

This is gonna be a problematic potential!



Verlet algorithm
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Solving (integrating) the Hamiltonian EOM

𝑞𝑖 𝑡 + 𝑑𝑡 ≈ 𝑞𝑖 𝑡 +
𝑝𝑖 𝑡

𝑚𝑖
𝑑𝑡 +

𝑓𝑖 𝑡

2𝑚𝑖
𝑑𝑡2 + 𝑂 𝑑𝑡3 + 𝑂(𝑑𝑡4)

𝑞𝑖 𝑡 − 𝑑𝑡 ≈ 𝑞𝑖 𝑡 −
𝑝𝑖 𝑡

𝑚𝑖
𝑑𝑡 +

𝑓𝑖 𝑡

2𝑚𝑖
𝑑𝑡2 − 𝑂 𝑑𝑡3 + 𝑂(𝑑𝑡4)

𝑞𝑖 𝑡 + 𝑑𝑡 ≈ 2𝑞𝑖 𝑡 − 𝑞𝑖 𝑡 − 𝑑𝑡 +
𝑓𝑖 𝑡

𝑚𝑖
𝑑𝑡2 + 𝑂(𝑑𝑡4)

𝑝𝑖 𝑡 ≈
𝑞𝑖 𝑡 + 𝑑𝑡 − 𝑞𝑖 𝑡 − 𝑑𝑡

2𝑑𝑡
+ 𝑂 𝑑𝑡3

𝑝𝑖 𝑡 + 𝑑𝑡 ≈ 𝑝𝑖 𝑡 +
𝑑𝑡

2
𝑓𝑖 𝑡 + 𝑓𝑖(𝑡 + 𝑑𝑡)

𝑞𝑖 𝑡 + 𝑑𝑡 ≈ 𝑞𝑖 𝑡 + 𝑝𝑖 𝑡 𝑑𝑡 +
𝑑𝑡2

2
𝑓𝑖 𝑡

Taylor series

velocity Verlet algorithm

More stable!
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How to assess the quality of integration scheme?

Invariants (integrals) 
of motion:

In the isolated system (NVE), 
the following quantities are conserved:

𝐻 = 𝑇 + 𝑈 total energy

𝑃 =

𝑖

𝑁

𝑝𝑖 total momentum

𝐿 =

𝑖

𝑁

𝑙𝑖 =

𝑖

𝑁

𝑟𝑖 × 𝑝𝑖

total angular 
momentum

The energy conservation can be affected by:

• Integration time step vs. highest frequency 𝜔 =
𝑘

𝑚

• Integration algorithm (e.g. Verlet vs. velocity Verlet)
• Force discontinuities
• Total energy of the systems (too “hot” requires smaller 𝑑𝑡)
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Illustration

𝑘 = 0.1,𝑚 = 100 ⇒ 𝜔 =
0.1

100
≈ 0.032 𝑎. 𝑢.−1⇒ 𝑑𝑡 ~

1

0.032
= 31.6

dt = 10 dt = 30 dt = 40 dt = 60
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Non-Hamiltonian Dynamics

To generate NVT (and other ensembles) we can:
• rescale velocity to satisfy the temperature T;  incorrect sampling of fluctuations
• add a random force and add a friction (Langevin/Andersen thermostat)
• rescale velocities by a factor not too different from 1.0, but which will eventually

lead to the desired average temperature (Berendsen)
• Introduce extended phase space variables such that the integration over extra variables

will yield the desired distribution (Nose, Nose-Hoover/chain thermostats, etc.)

𝛿 𝐻 𝑞, 𝑝, 𝑠, 𝑝𝑠 − 𝐸 →  𝑑𝑠𝑑𝑝𝑠𝛿 𝐻 𝑞, 𝑝, 𝑠, 𝑝𝑠 − 𝐸 = exp −
𝐻(𝑞, 𝑝)

𝑘𝐵𝑇

ሶ𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖
ሶ𝑝𝑖 = −

𝜕𝐻

𝜕𝑞𝑖
− 𝜉𝑝𝑖 There is no Hamiltonian 

from which these equations
can be derived.

non-Hamiltonian dynamicsBut, there is an extended energy, which
is conserved along the motion.
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An illustration of Non-Hamiltonian Dynamics

𝜈 = 0.001 𝜈 = 0.01 𝜈 = 0.05

Frequency of system-bath interaction

unstableNVE limit
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Observables 1: Initial velocities and Temperature

𝜌 𝑣𝑥 𝑑𝑣𝑥 =
𝑑𝑁𝑣𝑥
𝑁

=
𝑚

2𝜋𝑘𝐵𝑇

1/2

exp −
𝑚𝑣𝑥

2

2𝑘𝐵𝑇
𝑑𝑣𝑥

𝜌 𝑣 𝑑𝑣 =
𝑑𝑁𝑣
𝑁

= 4𝜋
𝑚

2𝜋𝑘𝐵𝑇

3/2

𝑣2 exp −
𝑚𝑣𝑥

2

2𝑘𝐵𝑇
𝑑𝑣

Average velocity (magnitude):

𝒗 = න
𝟎

∞

𝒗𝝆 𝒗 𝒅𝒗 =
𝟖𝒌𝑩𝑻

𝝅𝒎
𝒗𝟐 = න

𝟎

∞

𝒗𝟐𝝆 𝒗 𝒅𝒗 =
𝟑𝒌𝑩𝑻

𝒎

Average squared velocity:

Kinetic energy:

𝐾 =
1

2


𝑖=1

𝑁

𝑚𝑖𝑣𝑖
2 𝑲 =

𝟑𝑵𝒌𝑩𝑻

𝟐

Average kinetic energy: Instantaneous temperature:

𝑻 =
σ𝒊=𝟏
𝑵 𝒎𝒊𝒗𝒊

𝟐

𝟑𝑵𝒌𝑩

Equipartition Principle: in classical limit, the average energy 

corresponding to any quadratic term in Hamiltonian is 
𝟏

𝟐
𝒌𝑩𝑻
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Observables 2: Pressure

𝑲 = −
𝟏

𝟐


𝒊=𝟏

𝑵

𝒒𝒊𝑭𝒊Virial theorem gives:

from which, one can find: 𝑷𝑽 = 𝑵𝒌𝑩𝑻 −
𝟏

𝟑


𝒊=𝟏

𝑵

𝒒𝒊
𝝏𝑼

𝝏𝒒𝒊

If the particles do not 
interact (𝑈 = 0): 

𝑷𝑽 = 𝑵𝒌𝑩𝑻

the ideal gas law
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Observables 3: Thermodynamics fluctuations

Within the canonic (NVT) ensemble

𝜹𝑬𝟐 = 𝒌𝑩𝑻
𝟐𝑪𝑽

𝜹𝑲𝟐 =
𝟑

𝟐
𝑵 𝒌𝑩𝑻

𝟐 𝜹𝑼𝟐 = 𝒌𝑩𝑻
𝟐 𝑪𝑽 −

𝟑𝑵𝒌𝑩
𝟐

Heat capacity and phase transitions



37

• RDF, 𝒈(𝒓):
The probability to find two atoms at a given distance 𝑟 from 
each other in comparison to the probability of the same but 
in an uniformly distributed system of the same density

Observables 4: Radial distribution function (RDF)

𝒈 𝒓 =
𝝆(𝒓)

𝝆
=

𝑽𝑵(𝒓)

𝟒𝝅𝒓𝟐𝚫𝐫𝐍

𝑟 Δ𝑟

The average number of particles
that are within the shell [𝑟, 𝑟 + Δ𝑟]
from any other particle
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Observables 5: Time-correlation function

A0A1 A1A2 A2A3 A3A4 A4A5 A5A6 A6A7 A7A8 A8A9

A(t0) A(t1) A(t2) A(t3) A(t4) A(t5) A(t6) A(t7) A(t8) A(t9)

+ + + + + + + + +...( ) (0)A t A

A0A5 A3A8 A4A9

A(t0) A(t1) A(t2) A(t3) A(t4) A(t5) A(t6) A(t7) A(t8) A(t9)

+ + + +(5 ) (0)A t A +...

A0A2 A1A3 A2A4 A3A5 A4A6 A5A7 A6A8 A7A9+ + + + + + + +...(2 ) (0)A t A

A(t0) A(t1) A(t2) A(t3) A(t4) A(t5) A(t6) A(t7) A(t8) A(t9)

𝐶𝐴𝐵 𝜏 = 𝐴 𝑡 𝐵 𝑡 + 𝜏 𝑒𝑛𝑠
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Observables 5: Velocity autocorrelation function

𝐶𝑣𝑣 𝜏 = 𝑣 𝑡 𝑣 𝑡 + 𝜏 𝑒𝑛𝑠 =
1

𝑁


𝑖=1

𝑁
1

𝑁𝑖𝑛


𝑡0=1

𝑁𝑖𝑛

𝑣𝑖 𝑡0 𝑣𝑖(𝑡0 + 𝜏)

𝐼𝑣𝑣 𝜔 = න
−∞

∞

exp −𝑖𝜔𝜏 𝐶𝑣𝑣 𝜏 𝑑𝜏

Averaging is done w.r.t. the number of particles and w.r.t. the initial times

Optical response theory:
Fourier transform of the ACF
gives an IR spectrum
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Observables 6: Transport properties

𝑞 𝑡 − 𝑞 0 2 = 6𝐷𝑡

Einstein formula for 
diffusion coefficient in 3D

𝐷 = න
0

∞

𝐶𝑣𝑣 𝜏 𝑑𝜏

Green-Kubo formula
• Good with PBC
• Careful if stochastic thermostat

J. Chem. Theory Comput.
2008, 4, 652–656.

Activation energy for diffusion: 𝐷~exp(−Δ𝐸𝑎/𝑘𝐵𝑇)

J. Phys. Chem. C 2012, 
116, 22595–22601.

J. Chem. Theory Comput.
2010, 6, 2581–2590.



Initialization:

Get forces:

Move atoms and update velocity:
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𝑝𝑖 𝑡 + 𝑑𝑡 ≈ 𝑝𝑖 𝑡 +
𝑑𝑡

2
𝑓𝑖 𝑡 + 𝑓𝑖(𝑡 + 𝑑𝑡)

𝑞𝑖 𝑡 + 𝑑𝑡 ≈ 𝑞𝑖 𝑡 + 𝑝𝑖 𝑡 𝑑𝑡 +
𝑑𝑡2

2
𝑓𝑖 𝑡

General MD algorithm

𝑡 = 𝑡0

𝒑(𝑡0)𝒒(𝑡0)

Initial conditions:
Input structure -
e.g. from a database,
guess structure
Describe the chemistry
of the system

Initial conditions:
E.g. sample from
the Maxwell-Boltzmann
distribution using MC.
Describe the conditions

𝑭 = −
𝜕𝑈

𝜕𝒒

𝑡 = 𝑡 + 𝑑𝑡

Interactions:
QM, 
Force fields, 
Models
Describe the physics 
of the system

Integration:
Equations to 
sample
NVE or NVT 
Ensemble
Describe the 
statistics
of the system

Analysis:
Compute the 
Desired properties.
Connection to
experiment.
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Preparation to MD simulations

kT

1

2

3

Energy

conformation

1: optimize your structure to the 

nearby (local) energy minimum
(steepest descent, Newton’s method,
BFGS, etc.)

2: thermalize your structure to target 

temperature (NVT ensemble MD, simulated 
annealing, etc.)

3: production run. Sample conformation

from desired distribution using suitable 
MD or MC algorithm
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Exercises: ACF and Spectrum of a predefined data

𝑟(𝑡) = sin 𝜔1𝑡 , cos 𝜔2𝑡 , sin(𝜔3𝑡)
𝜔1 = 500 𝑐𝑚−1

𝜔2 = 1400 𝑐𝑚−1

𝜔3 = 850 𝑐𝑚−1

In Tut2
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Exercises: ACF and Spectrum of 2-atomic system

Analytic calculation: 
Frequency =  3103.79623215  cm^-1

3103.79623 cm^-1

In Tut3, prefix = “test1”

Normal modes give:

In Tut3, prefix = “test2”

4389.43073

Normal modes give:
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Exercises: ACF and Spectrum of a linear chain

In Tut3, prefix = “test3”

In Tut3, prefix = “test4”,  

scl = (0.1, 0.0, 0.0)

1136.06827 cm^-1
2194.71536 cm^-1
3103.79623 cm^-1
3801.35852 cm^-1
4239.86450 cm^-1

Normal modes give:

scl = (0.0, 0.0, 0.0)
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Exercises: Linear chain in NVE ensemble
Tut4: NVE
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Exercises: Linear chain in NVT ensemble
Tut4: NVT
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Exercises: Dynamics of LJ cluster

Tut5: NVE of LJ cluster, no thermalization – nve.py

Energy is not conserved!
(phase transitions)

Temperature is high!
Low-frequency modes

are indicative of translational motion

t=0 t=150 t=300
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Exercises: Dynamics of LJ cluster

Tut5: NVE of LJ cluster, with thermalization (simulated annealing) –
nve2.py

Energy is well conserved! Temperature is 
reasonable

Higher-frequency modes
are resolved

t=0 t=150 t=300
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Exercises: Dynamics of LJ cluster

Tut5: NVT of LJ cluster after simulated annealing (nvt.py), slow bath

t=0 t=150 t=300

Beware: Bath modes!
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Exercises: Dynamics of LJ cluster

Tut5: NVT of LJ cluster after simulated annealing (nvt.py), fast bath

Beware: Bath modes!
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Exercises: Diffusion coefficient, larger cluster

Preliminary simulated
annealing is important!

125 atoms

Equilibration period!!!

𝐷 =
𝑞 𝑡 − 𝑞 0 2

6𝑡

Tut6: 
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Exercises: Heat capacity
Tut7: 
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Summary of Tutorials

Tut1 – demonstration of MD for 𝑁𝑡𝑟𝑎𝑗 trajectories, each with 1 particle. NVE and NVT

Tut2 – demonstration of computing the ACF and its FT for a predefined sequence

Tut3 – computing ACF for a chain of particles connected by springs

Tut4 – going back to MD, for a chain of atoms.

Tut5 – MD of a LJ cluster

Tut6 – MD of a larger LJ cluster, computing diffusion coefficients

Tut7 – MD of a LJ cluster, computing heat capacity
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Overview of software

Material Simulations Biological Systems

Visualization

iQmol

Quantum Calculations


