Computational Materials Theory and Methods

Lecture 2: Classical Molecular Mechanics

Alexey V. Akimov University at Buffalo, SUNY

Time and size scales for different methods of dynamics

Accuracy and methodology

Level of theory

Level of coarse-graining

Potential energy surface (PES)

Stationary Schrodinger Equation

 $\widehat{H}\Psi(r; R) = E(R)\Psi(r; R)$

- Computationally **expensive**!
- Can we **fit the curves** with a simple analytical function?

Within the Born-Oppenheimer Approximation

$f(q_1, q_2, ..., q_N; P_1, P_2, ..., P_M)$

- Numerically efficient
- Has suitable derivatives
- Is continuous
- Physically meaningfull

- Based on atom and interaction types
- Minimal amount is desirable
- Transferable or system-specific
- Reproduce ab initio or experiment (thermodynamic properties, spectra, chemical reactivity, etc.)

$E_{tot} = E_{bonded} + E_{non-bonded}$

describes covalent bonding

non-covalent interactions

Bonded interactions

 $E_{bonded} = E_{bonds} + E_{angles} + E_{dihedrals} + E_{oop}$

In quantum mechanics: bonds are everywhere "bond order" In molecular mechanics: bonded atoms must be specified by the user

Non-bonded interactions

Charges are usually constant, but there are **geometry-dependent charge schemes** (e.g. qEQ) Accounts for the polarizability

Rappe, A. K.; Goddard, W. A. J. Phys. Chem. **1991**, *95*, 3358–3363.

Ogawa, T.; Kurita, N.; Sekino, H.; Kitao, O.; Tanaka, S. *Chem. Phys. Lett.* **2004**, *397*, 382–387.

Chen, J.; Martinez, T. J. *Chem. Phys. Lett.* **2007**, *438*, 315–320.

In periodic systems, the lattice summation methods are used, such as **Ewald sum** method.

Karasawa, N.; Goddard III, W. A. J. Phys. Chem. **1989**, *93*, 7320–7327.

$$v_{disp}(r_i, r_j) = -\frac{C_6}{|\mathbf{r}_i - \mathbf{r}_j|^6}$$

$$v_{el}(r_i, r_j) = \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

non-bonded 2-particle vdw and Coulomb interactions

Atom types

Universal FF (UFF)

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024-10035.

Table I. Atomic Data

	val	ence		nonbond		
atom type	bond r _l ^a	angle θ_0^b	distance x_i^a	energy D_{l}^{c}	scale Š	charge Z_{I}^{*d}
H_	0.354	180.0	2.886	0.044	12.0	0.712
H₋b	0.460	83.5	2.886	0.044	12.0	0.712
He4+4	0.849	90.0	2.362	0.056	15.24	0.098
Li	1.336	180.0	2.451	0.025	12.0	1.026
Be3+2	1.074	109.47	2.745	0.085	12.0	1.565
B_ 3	0.838	109.47	4.083	0.180	12.052	1.755
B_2	0.828	120.0	4.083	0.180	12.052	1.755
C_3	0.757	109.47	3.851	0.105	12.73	1.912
C_R	0.729	120.0	3.851	0.105	12.73	1.912
C_2	0.732	120.0	3.851	0.105	12.73	1.912
C_1	0.706	180.0	3.851	0.105	12.73	1.912
N_3	0.700	106.7	3.660	0.069	13.407	2.544
N_R	0.699	120.0	3.660	0.069	13.407	2.544
N_2	0.685	1 11.2	3.660	0.069	13.407	2.544
N_1	0.656	180.0	3.660	0.069	13.407	2.544
O_3	0.658	104.51	3.500	0.060	14.085	2.300
O_3_z	0.528	146.0	3.500	0.060	14.085	2.300
O_R	0.680	110.0	3.500	0.060	14.085	2.300
O_2	0.634	120.0	3.500	0.060	14.085	2.300
0_1	0.639	180.0	3.500	0.060	14.085	2.300

Generalized Amber FF

Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157-1174.

Table 1. Atom Types and Their Definitions in GAFF.

MERCK FF 94

Halgren, T. A. J. Comput. Chem. **1996**, *17*, 490–519.

TABLE III. MMFF94 Symbolic and Numeric Atom Types

			Ator	n type		
No.	Atom type	Description	Symbolic	Numeric	Definition [coordination number] ^a {formal charge} ^b	
1	C	sp^2 carbon in C—O. C—S	CR	1	Alkyl carbon [4]	
1	-2	sp carbon in c=0, c=3	C=C	2	Vinylic carbon [3]	
3	c2	sp ⁻ carbon, aliphatic	CSP2	2	Generic sp ² carbon [3]	
5	ca	sp ² carbon, aromatic	C=0	3	Generic carbonyl carbon [3]	
7	n1	sp ¹ nitrogen	C=N	3	Imine-type carbon [3]	
9	n3	sp^3 nitrogen with 3 subst.	CGD	3	Guanidine carbon [3]	
11	na	sp^2 nitrogen with 3 subst.	C=OR	3	Ketone or aldehyde carbonyl carbon [3]	
			C=ON	3	Amide carbonyl carbon [3]	
13	no	Nitrogen in nitro groups	C00	3	Carboxylic acid or ester	
15	oh	sp ³ oxygen in hydroxyl groups			carbonyl carbon [3]	
17	s2	sp^2 sulfur (p=S, C=S, etc.)	COON	3	Carbamate carbonyl	
10	88	sp ³ sulfur inSR and SS			carbon [3]	
21	33	sp surfur inSR and SS	C000	з	Carbonic acid or ester	
21	50	nypervalent sunui, 4 subst.			carbonyl carbon [3]	
23	p3	sp ³ phosphorus, 3 subst.	C=OS	3	Thioester carbonyl carbon,	
25	p5	hypervalent phosphorus, 4 subst.			double bonded to O [3]	
27	ha	hydrogen on aromatic carbon	C=S	3	Thioester carbon, double	
29	ho	hydrogen on oxygen			bonded to S [3]	
31	hn	hydrogen on phosphorus	C=SN	3	Thioamide carbon, double	
22	np al	any chloring			bonded to S [3]	
33	CI	any chlorine	CSO2	3	Carbon in $> C = SO_2$ [3]	
			CS=0	3	Sulfinyl carbon in	

$> \dot{C} = S = 0$ [3]

General purpose FFs

Specialized FFs

Parameterization: Specialized FFs

MERCK FF 94

- Accurate
- Focus on organic molecules
- Many parameters!

$$E_{MMFF} = \sum EB_{ij} + \sum EA_{ijk} + \sum EBA_{ijk}$$
$$+ \sum EOOP_{ijk;i} + \sum ET_{ijki}$$
$$+ \sum EvdW_{ij} + \sum EQ_{ij}$$

$$EB_{ij} = 143.9325 \frac{k b_{ij}}{2} \Delta r_{ij}^2$$
$$\times (1 + cs \Delta r_{ij} + 7/12 cs^2 \Delta r_{ij}^2)$$

 $\mathrm{EA}_{ijk} = 0.043844 \frac{\mathrm{k}a_{IJK}}{2} \Delta \vartheta_{ijk}^{2} (1 + cb \Delta \vartheta_{ijk})$

 $\text{EOOP}_{ijk;l} = 0.043844 \frac{k \, oop_{IJK;L}}{2} \chi_{ijk;l}^2 \qquad \qquad \text{ET}_{ijkl} = 0.5(V_1(1 + \cos \Phi) + V_2(1 - \cos 2\Phi))$

$$EBA_{ijk} = 2.51210(k \, ba_{IJK} \, \Delta r_{ij} + k \, ba_{KJI} \, \Delta r_{kj}) \, \Delta \vartheta_{ijk}$$

$$E_{vdW_{ij}} = \varepsilon_{IJ} \left(\frac{1.07R_{IJ}^*}{R_{ij} + 0.07R_{IJ}^*} \right)^2 \left(\frac{1.12R_{IJ}^{*7}}{R_{ij}^7 + 0.12R_{IJ}^{*7}} - 2 \right)$$

* MMFF BOND PARAMETERS- Rev: 26-OCT-94 Sourc * C94 = CORE MMFF94 parameter - obtained fro * X94 = EXTD MMFF94 parameter - fit to addit * E94 = r0 from fit to X-ray data, kb from e 760 * #C94 = r0 lies between C94 and E94 values, 761 * #X94 = r0 lies between X94 and E94 values, 762 * #E94 = r0 and k both from empirical rules 763 * 764 kb types r0Source 1 1 4.258 1.508 C94 4.539 1.482 766 0 2 C94 767 0 4.190 C94 1 3 1.492 4 4.707 1.459 X94 4.766 1.093 C94 5 6 5.047 1.418 C94 1 8 5.084 1.451 C94 1 9 4.763 1.458 C94 773 0 1 10 4.664 1.436 C94 774 0 1 11 6.011 1.360 #C94

1339	*						
1340	*	MMFF	ANG	LE PAR	RAMETERS- Rev	v: 26-Oct	-94 Source: MMFF94
1341	*	C94	= C	ORE M	IFF94 paramet	ter - obta	ined from ab initio data
1342	*	X94	= E	XTD M	IFF94 paramet	ter - fit	to additional ab initio data
1343	*	E94	= t	heta0	from fit to	X-ray dat	a, ka from empirical rule
1344	*	#E94	= t	heta0	and ka both	from empi	rical rules
1345	*						
1346	*	at	tom	types	ka	theta0	Comment/origin
1347	0	0	1	0	0.000	108.900	0:*-1-* MMFF94 DEF
1348	0	1	1	1	0.851	109.608	C94
1349	0	1	1	2	0.736	109.445	C94
1350	0	1	1	3	0.777	107.517	C94
1351	0	1	1	4	1.006	110.265	E94
1352	0	1	1	5	0.636	110.549	C94
1353	0	1	1	6	0.992	108.133	C94
1354	0	1	1	8	0.777	108.290	C94
1355	0	1	1	9	1.136	108.194	E94
1356	0	1	1	10	1.050	109.960	C94
1357	0	1	1	11	1.225	108.313	C94
1358	0	1	1	12	1.056	108.679	C94
1359	0	1	1	13	1.078	106.820	E94
1360	0	1	1	14	0.980	109.945	E94
1361	0	1	1	15	0.743	107.397	C94
1362	0	1	1	17	1.089	108.578	E94
1363	0	1	1	18	1.093	109.315	E94
1364	0	1	1	19	0.755	115.436	E94
1365	0	1	1	20	1 021	108 659	E94

 $EQ_{ij} = 332.0716 q_i q_j / (D(R_{ij} + \delta)^n) \qquad q_i = q_i^0 + \sum \omega_{KI}$

4164 12. MMFFTOR.PAR: This file supplies parameters for tor 4165 *

4166	*			Copyra	ight	(c) Mer	ck and Co	., Inc.,	1994, 1
4167	*					P	11 Rights	s Reserve	ed
4168	*								
4169	*	MMFF	TORSI	ION PAI	RAME	TERS- Re	v: 26-00	CT-94 SC	ource: MM
4170	*	C94	- COF		F94 1	paramete	r - from	fits to	conforma
4171	*	X94	- EX1	D MMF	F94 j	paramete	r - also	from fit	s to con
4172	*	E94	- EX1	D MMF	F94 j	paramete	r - from	empirica	al rule
4173	*	#E94	- Ad	justed	fro	n empiri	cal rule	value	
4174	*								
4175	*		atom	types		V1	V2	V3	Source
4176	0	0	1	1	0	0.000	0.000	0.300	C94 0:*
4177	5	0	1	1	0	0.200	-0.800	1.500	C94 5:*
4178	0	1	1	1	1	0.103	0.681	0.332	C94
4179	5	1	1	1	1	0.144	-0.547	1.126	C94
4180	0	1	1	1	2	-0.295	0.438	0.584	C94
4181	0	1	1	1	3	0.066	-0.156	0.143	C94
4182	0	1	1	1	5	0.639	-0.630	0.264	C94
4183	0	1	1	1	6	-0.688	1.757	0.477	C94
4184	5	1	1	1	6	0.000	0.000	0.054	C94
4185	0	1	1	1	8	-1.420	-0.092	1.101	C94
4186	5	1	1	1	8	0.000	-0.158	0.323	C94
4187	0	1	1	1	11	0.593	0.662	1.120	C94

Halgren, T. A. J. Comput. Chem. 1996, 17, 490–519.

 $+V_{3}(1 + \cos 3\Phi))$

Parameterization: General-purpose FFs

Universal FF (UFF)

- Not so accurate!
- General purpose (e.g. organometallic)
- Way fewer parameters!

	valence			nonbond			
atom type	bond r_1^a	angle θ_0^b	distance x _i ^a	energy D ₁ ^c	scale 5	charge Z_{I}^{*d}	
H_	0.354	180.0	2.886	0.044	12.0	0.712	
H_b	0.460	83.5	2.886	0.044	12.0	0.712	
He4+4	0.849	90.0	2.362	0.056	15.24	0.098	
Li	1.336	180.0	2.451	0.025	12.0	1.026	
Be3+2	1.074	109.47	2.745	0.085	12.0	1.565	
B_3	0.838	109.47	4.083	0.180	12.052	1.755	
B_2	0.828	120.0	4.083	0.180	12.052	1.755	
C_3	0.757	109.47	3.851	0.105	12.73	1.912	
C_R	0.729	120.0	3.851	0.105	12.73	1.912	
C_2	0.732	120.0	3.851	0.105	12.73	1.912	
C_1	0.706	180.0	3.851	0.105	12.73	1.912	
N_3	0.700	106.7	3.660	0.069	13.407	2.544	
N_R	0.699	120.0	3.660	0.069	13.407	2.544	
N_2	0.685	111.2	3.660	0.069	13.407	2.544	
N 1	0 656	180.0	3 660	0.069	13 407	2 544	

atom type	V ₁ (kcal/mol)	atom type	V ₁ (kcal/mol)	atom type	V_1 (kcal/mol)
C_3	2.119	S_3	0.484	Sb3	1.1
N_3	0.450	Ge3	0.701	Te3	0.3
O_3	0.018	As3	1.5	Pb3	0.1
Si3	1.225	Se3	0.335	Bi3	1.0
P_3	2.400	Sn3	0.199	Po3	0.3

$$E_{\rm vdw} = D_{\rm IJ} \left\{ -2 \left[\frac{x_{\rm IJ}}{x} \right]^6 + \left[\frac{x_{\rm IJ}}{x} \right]^{12} \right\}$$

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. *J. Am. Chem. Soc.* **1992**, *114*, 10024– 10035.

$$E = E_{\rm R} + E_{\theta} + E_{\phi} + E_{\omega} + E_{\rm vdw} + E_{\rm el}$$

$$E_{\rm R} = \frac{1}{2}k_{\rm IJ}(r - r_{\rm IJ})^2 \qquad E_{\rm R} = D_{\rm IJ}[e^{-\alpha(r - r_{\rm IJ})} - 1]^2$$

$$r_{\rm IJ} = r_{\rm I} + r_{\rm J} + r_{\rm BO} + r_{\rm EN}$$

$$k_{\rm IJ} = \left(\frac{\partial^2 E_{\rm r}}{\partial R^2}\right)_0 = 2G \frac{Z_{\rm I}^* Z_{\rm J}^*}{R^3} = 664.12 \frac{Z_{\rm I}^* Z_{\rm J}^*}{r_{\rm IJ}^3} \qquad r_{\rm BO} = -\lambda(r_{\rm I} + r_{\rm J}) \ln(n)$$

$$r_{\rm EN} = r_{\rm I} r_{\rm J} (\sqrt{\chi_{\rm I}} - \sqrt{\chi_{\rm J}})^2 / (\chi_{\rm I} r_{\rm I} + \chi_{\rm J} r_{\rm J})$$

$$E_{\theta} = \frac{K_{IJK}}{n^2} \left[1 - \cos\left(n\theta\right)\right] \qquad \qquad E_{\theta} = K_{IJK} \left[C_0 + C_1 \cos\theta + C_2 \cos 2\theta\right]$$

$$E_{\phi} = \frac{1}{2}V_{\phi}[1 - \cos n\phi_0 \cos n\phi]$$

 $x_{\rm IJ} = \sqrt{x_{\rm I} \times x_{\rm J}}$

 $D_{\rm IJ} = (D_{\rm I} D_{\rm J})^{1/2}$

$$V_{\rm sp^2} = 5\sqrt{U_j U_k} (1 + 4.18 \ln ({\rm BO}_{jk}))$$

 $E_{\rm el} = 332.0637 (Q_i Q_j / \epsilon R_{ij})$

Polarization: Charge equilibration method

Rappe, A. K.; Goddard, W. A. *J. Phys. Chem.* **1991**, *95*, 3358–3363.

$$E_{\rm A}(Q) = E_{\rm A0} + Q_{\rm A} \left(\frac{\partial E}{\partial Q}\right)_{\rm A0} + \frac{1}{2} Q_{\rm A}^2 \left(\frac{\partial^2 E}{\partial Q^2}\right)_{\rm A0} + \dots$$

 $\left(\frac{\partial E}{\partial Q}\right)_{A0} = \frac{1}{2}(IP + EA) = \chi_A^0$ electronegativity

 $E_{\rm A}(0)=E_{\rm A0}$

$$E_{A}(-1) = E_{A0} - \left(\frac{\partial E}{\partial Q}\right)_{A0} + \frac{1}{2}\left(\frac{\partial^{2} E}{\partial Q^{2}}\right)_{A0}$$

 $E_{A}(+1) = E_{A0} + \left(\frac{\partial E}{\partial Q}\right)_{A0} + \frac{1}{2} \left(\frac{\partial^{2} E}{\partial Q^{2}}\right)_{A0}$

$$\left(\frac{\partial^2 E}{\partial Q}\right)_{A0} = IP - EA$$
$$IP - EA = J_{AA}^0$$

self-Coloumb (idempotential)

element	χ, eV	J, eV	<i>R</i> , Å	ζ, au
Li	3.006	4.772	1.557	0.4174
С	5.343	10.126	0.759	0.8563
N	6.899	11.760	0.715	0.9089
0	8.741	13.364	0.669	0.9745
F	10.874	14.948	0.706	0.9206
Na	2.843	4.592	2.085	0.4364
Si	4.168	6.974	1.176	0.7737
Р	5.463	8.000	1.102	0.8257
S	6.928	8.972	1.047	0.8690
Cl	8.564	9.892	0.994	0.9154
K	2.421	3.84	2.586	0.4524
Br	7.790	8.850	1.141	1.0253
Rb	2.331	3.692	2.770	0.5162
1	6.822	7.524	1.333	1.0726
Cs	2.183	3.422	2.984	0.5663
н	4.5280 ^b	13.8904 ⁶	0.371	1.0698

$$E_{A}(Q) = E_{A0} + \chi_{A}^{0}Q_{A} + \frac{1}{2}J_{AA}^{0}Q_{A}^{2}$$

$$E_{Q}(Q_{1}...Q_{N}) = \sum_{A} (E_{A0} + \chi_{A}^{0}Q_{A}) + \frac{1}{2}\sum_{A,B} Q_{A}Q_{B}J_{AB}$$

$$\chi_{A}(Q_{1}...Q_{N}) = \frac{\partial E}{\partial Q_{A}} = \chi_{A}^{0} + \sum_{B} J_{AB}Q_{B}$$

$$\chi_{1} = \chi_{2} = ... = \chi_{N}$$

$$Q_{\text{tot}} = \sum_{i=1}^{N} Q_{i}$$

Handling vdW interactions with PBC

$$U(\{\mathbf{R}\}, \mathbf{L}_{x}, \mathbf{L}_{y}, \mathbf{L}_{z}) = \frac{1}{2} \sum_{n_{x}, n_{y} n_{z}} \sum_{i, j} U(|\mathbf{R}_{i} - \mathbf{R}_{j} - \mathbf{L}_{x} n_{x} - \mathbf{L}_{y} n_{y} - \mathbf{L}_{z} n_{z}|)$$

- L_x, L_y, L_z Simulation cell vectors $\{R\}$ Atomic coordinates
- All combinations of integers n_x , n_y , n_z
- That is an infinite number of cells!
- Exclude self-interactions

Dealing with the infinite number of terms

Van der Walls interactions are **short-ranged**

Disregard all the interactions for the particles separated more than by R_{cut}

Handling non-bonded interactions with PBC

If simulation cell size L is larger than $2R_{cut}$, it is sufficient to have only one shell of periodic images

Handling electrostatic interactions with PBC

Electrostatic interactions are **long-ranged**

Can not use the cutoff technique

Direct summation is slowly converging

		NaCl ^d			
R _{outer} , ^b Å	R _{inner} , ^b Å	terms	E _Q	$E_{\rm disp}$	
10	8	608	-981.65	-20.330	
10	9	608	-1556.20	-20.413	
10	10	608	-1492.67	-20.445	
15	14	2152	1446.83	-20.726	
15	15	2152	1281.61	-20.735	
20	19	5296	-1743.32	-20.794	
20	20	5296	1207.33	-20.800	
25	24	10320	1210.98	-20.821	
25	25	10320	109.11	-20.822	
Ewald ^c			-824.59	-20.846	

TABLE I: Convergence of Nonbond Interactions Using Atom-Based Cutoffs^a

Truncation of the potential makes it discontinuous at $R = R_{cut}$.

Solution: shift by the corresponding energy shifted potential

$$v^{\mathbf{S}}(r_{ij}) = \begin{cases} v(r_{ij}) - v_{\mathbf{c}} & r_{ij} \leq r_{\mathbf{c}} \\ 0 & r_{ij} > r_{\mathbf{c}} \end{cases}$$

But the forces are still discontinuous!

Solution: Modify the potential such that the force is also continuous at $R = R_{cut}$ **shifted-force potential**

$$v^{\text{SF}}(r_{ij}) = \begin{cases} v(r_{ij}) - v_{\text{c}} - \left(\frac{\mathrm{d}v(r_{ij})}{\mathrm{d}r_{ij}}\right)_{r_{ij} = r_{\text{c}}} (r_{ij} - r_{\text{c}}) & r_{ij} \leq r_{\text{c}} \\ 0 & r_{ij} > r_{\text{c}} \end{cases}$$

$$SW(R, R_{on}, R_{off}) = \begin{cases} 1, R < R_{on} \\ \left(\frac{R_{off} - R}{R_{off} - R_{on}}\right)^3 \\ 1 + 3\left(\frac{R - R_{on}}{R_{off} - R_{on}}\right) + 6\left(\frac{R - R_{on}}{R_{off} - R_{on}}\right)^2 \\ 0.R > R_{off} \end{cases}$$

Classification of the FFs

$$E(q_1, q_2, \dots) = E(0, 0, \dots) + \sum_{i \in DOF} \frac{\partial E}{\partial q_i} q_i + \frac{1}{2} \sum_{i, j \in DOF} \frac{\partial^2 E}{\partial q_i \partial q_j} q_i q_j + \dots$$

Class I FFs: (diagonal terms): e.g. all bonds, all angles, etc. Class II FFs: (+ cross-terms): e.g. add bond-angle interactions (e.g. like in MMFF94)

Bond-order ("reactive") FFs:

$$E(q_1, q_2, \dots) = \sum_{(i,j)} a_{ij} b o_{ij} + \sum_{\substack{(i_1, j_1), \\ (i_2, j_2)}} a_{i_1 j_1} a_{2 j_2} b o_{i_1 j_1} b o_{i_2 j_2} + \dots$$

$$bo_{ij} = Ae^{-\alpha r_{ij}}$$
 Bond order

not the way it is defined in QM!

 $U(x \to \infty) \to 0$ Physically correct limit: No interaction for infinitely separated atoms Bond breaking is possible!

ReaxFF

Constructing your own FF: Example 1

Physisorption: All atoms, except S

$$E_{phys,nonbonded} = \sum_{\substack{i,j \\ i \in molecule \\ j \in surface}} D_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] SW(r_{ij})$$

Chemisorption: S atom

The temperature when C_n , $n \ge 2$ started rotating didn't depend too much on the alkyl size n

Constructing your own FF: Example 2

Akimov, A. V.; Williams, C.; Kolomeisky, A. B. *J. Phys. Chem. C* **2012**, *116*, 13816–13826.

$$E = E_{\rm vdw} + E_{\rm elec}$$

$$E_{\rm elec} = \sum_{i \in \rm real} \left(\chi_i q_i + \frac{1}{2} J_i q_i^2 + q_i \sum_{\substack{j \in \rm real \\ j \neq i}} \frac{q_j}{r_{ij}} + q_i \sum_{\substack{j \in \rm image \\ \tilde{r}_{ij}}} \frac{\tilde{q}_j}{\tilde{r}_{ij}} \right)$$

$$E_{\rm vdw} = D \left[\left(\frac{\sigma_{\rm C-Au}}{r} \right)^{12} - 2 \left(\frac{\sigma_{\rm C-Au}}{r} \right)^6 \right]$$

$$\rho_i = \sum_{k \in Au} e^{-\alpha r_{ik}} S_1(r_{ik})$$

$$\begin{split} q_i &= \beta \rho_i - \gamma \sum_{\substack{j \neq i \\ j \in C}} \rho_j S_2(r_{ij}) \\ \beta &> 0 \\ \gamma &> 0 \end{split}$$

Parameterization (PM6)

Validation

C60/Au diffusion coefficients

Materials modeling FFs

Embedded atom method (EAM)

Daw, M. S.; Baskes, M. I. Phys. Rev. Lett. 1983, 50, 1285–1288

Modified EAM (MEAM)

Baskes, M. I. Phys. Rev. Lett. 1987, 59, 2666–2669 Baskes, M. I.; Nelson, J. S.; Wright, A. F. Phys. Rev. B 1989, 40, 6085–6100.

MEAM92

Baskes, M. I. Phys. Rev. B 1992, 46, 2727-2742.

Brenner, Tersoff-Brenner, REBO

Brenner, D. W. Phys. Rev. B 1990, 42, 9458-9471

ReaxFF

Van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A 2001, 105, 9396–9409

Charge-optimized many-body (COMBx)

Yu, J.; Sinnott, S.; Phillpot, S. Phys. Rev. B 2007, 75, 085311

Learn more: Akimov, A. V.; Prezhdo, O. V. *Chem. Rev.* **2015**, *115*, 5797–5890.

Systems with non-directional bonds (metals, alloys)

Introduced bond directionality (silicon, etc.)

Extended set of elements (metals and non-metals)

Reactive potentials for hydrocarbons

Polarizable reactive potentials

Exercises: Running AA MD of H2O cluster

Tut2.1

params["input_structure"] = "/23waters-aa.ent"

First, we cool the system down optimization

Then, put some kinetic energy

Exercises: Running RB MD of H2O cluster

Tut2.1

params["input_structure"] = "/23waters.ent"

Now, do the same, but remove internal degrees of freedom

Exercises: Running aa MD of SubPc/C60 cluster

This is the same as before, but using a predefined library Use: run_aa_md.py

Tut2.2

High T – behaves wildly

Assign T = 300 K after cooling

Internal degrees of freedom "absorb" energy leading to low temperature

Exercises: Running aa MD of SubPc/C60 cluster

Tut2.2This is the same as before, but using another class
Use: run_aa_md_state.py

Gives the same as before (NVE ensemble)

10 ps of MD

One N center inversion occurs

Exercises: Computing specific heat capacity of gold

Reference value:

 $0.129 \frac{J}{q * K}$

Normal modes analysis

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$
$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{i}} = \frac{\partial L}{\partial q_{i}} = -\frac{\partial V}{\partial q_{i}}$$

$$m\ddot{q}_1 = -2k(q_1 - q_2)$$

$$n\ddot{q}_2 = 2k(q_1 - q_2)$$

 $det \begin{pmatrix} 2k - m\omega^2 & -2k \\ -2k & 2k - m\omega^2 \end{pmatrix} = (2k - m\omega^2)^2 - 4k^2 = -4km\omega^2 + m^2\omega^4 = 0$ $m\omega^2 = 4k \Rightarrow \omega = 2\sqrt{\frac{k}{m}}$

Normal modes analysis

 q_i are the displacements of all atoms in Cartesian coordinate system

$$T = \frac{1}{2}m(\dot{q}_{1}^{2} + \dot{q}_{3}^{2}) + \frac{1}{2}M\dot{q}_{2}^{2}$$

$$U = \frac{1}{2}k(q_{1} - q_{2})^{2} + \frac{1}{2}k(q_{3} - q_{2})^{2}$$
Kinetic energy
Potential energy

Apply Lagrangian Equations of motion

$$m\ddot{q}_{1} = k(q_{2} - q_{1})$$

$$M\ddot{q}_{2} = k(q_{1} - q_{2}) + k(q_{3} - q_{2})$$

$$m\ddot{q}_{3} = k(q_{2} - q_{3})$$

Search the solutions $q_i = A_i \exp(i\omega t + \delta_i)$ in the form:

$$-m\omega^{2}q_{1} = k(q_{2} - q_{1})$$

$$-M\omega^{2}q_{2} = k(q_{1} - q_{2}) + k(q_{3} - q_{2})$$

$$-m\omega^{2}q_{3} = k(q_{2} - q_{3})$$

$$(-m\omega^{2} + k)q_{1} - kq_{2} = 0$$

-kq_{1} + (-M\omega^{2} + 2k)q_{2} - kq_{3} = 0
-kq_{2} + (-m\omega^{2} + k)q_{3} = 0

Apply Lagrangian Equations of motion

$$-m\omega^{2}q_{1} = k(q_{2} - q_{1})$$

$$-M\omega^{2}q_{2} = k(q_{1} - q_{2}) + k(q_{3} - q_{2})$$

$$-m\omega^{2}q_{3} = k(q_{2} - q_{3})$$

$$(-m\omega^{2} + k)q_{1} - kq_{2} = 0$$

$$-kq_{1} + (-M\omega^{2} + 2k)q_{2} - kq_{3} = 0$$

$$-kq_{2} + (-m\omega^{2} + k)q_{3} = 0$$

$$\begin{pmatrix} m\omega^2 - k & k & 0 \\ k & M\omega^2 - 2k & k \\ 0 & k & m\omega^2 - k \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Non-trivial solution is when

$$det \begin{pmatrix} m\omega^{2} - k & k & 0 \\ k & M\omega^{2} - 2k & k \\ 0 & k & m\omega^{2} - k \end{pmatrix} = = (m\omega^{2} - k)[(M\omega^{2} - 2k)(m\omega^{2} - k) - k^{2}] - k[k(m\omega^{2} - k)] = = (m\omega^{2} - k)[(M\omega^{2} - 2k)(m\omega^{2} - k) - 2k^{2}] = 0$$

 $(M\omega^2 - 2k)(m\omega^2 - k) - 2k^2 = Mm\omega^4 - 2km\omega^2 - kM\omega^2 = \omega^2[Mm\omega^2 - k(2m + M)]$

Possible solutions

In a general form

$$T = \frac{1}{2} \sum_{i} m_{i} \dot{q}_{i}^{2}$$
Kinetic energy
$$V = V(q_{eq}) + \sum_{i} \frac{\partial V}{\partial q_{i}} q_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} V}{\partial q_{i} \partial q_{j}} q_{i} q_{j}$$
Potential energy
$$q_{i} = A_{i} \exp(i\omega t + \delta_{i})$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$-m_i \omega^2 q_i + \sum_i \frac{\partial^2 V}{\partial q_i \partial q_k} q_k = 0 \quad \Longrightarrow \quad \det |M\omega^2 - \mathbf{H}| = 0$$